The spectral radius and Liapunov's theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perron-Frobenius Theorem for Spectral Radius Analysis

The spectral radius of a matrix A is the maximum norm of all eigenvalues of A. In previous work we already formalized that for a complex matrix A, the values in A grow polynomially in n if and only if the spectral radius is at most one. One problem with the above characterization is the determination of all complex eigenvalues. In case A contains only non-negative real values, a simplification ...

متن کامل

Cauchy’s Interlace Theorem and Lower Bounds for the Spectral Radius

We present a short and simple proof of the well-known Cauchy interlace theorem. We use the theorem to improve some lower bound estimates for the spectral radius of a real symmetric matrix.

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

Cliques and the spectral radius

We prove a number of relations between the number of cliques of a graph G and the largest eigenvalue (G) of its adjacency matrix. In particular, writing ks (G) for the number of s-cliques of G, we show that, for all r 2; r+1 (G) (r + 1) kr+1 (G) + r X s=2 (s 1) ks (G) r+1 s (G) ; and, if G is of order n; then kr+1 (G) (G) n 1 + 1 r r (r 1) r + 1 n r r+1 :

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90291-j